1. Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = \{1,2,3 ...,13 ,14\} defined asR = \{(x,y): 3x - y = 0\}

Answers (1)

A = \{1,2,3 ...,13 ,14\}

R = \{(x,y): 3x - y = 0\} = \left \{ \left ( 1,3 \right ),\left ( 2,6 \right ),\left ( 3,9 \right ),\left ( 4,12 \right ) \right \}

Since,  \left ( 1,1 \right ),\left ( 2,2 \right ),\left ( 3,3 \right ),\left ( 4,4 \right ),\left ( 5,5 \right )\cdot \cdot \cdot \cdot \cdot \cdot \left ( 14,14 \right ) \notin R so R is not reflexive.

Since, \left ( 1,3 \right ) \in R but  \left ( 3,1 \right ) \notin R so R is not  symmetric.

Since, \left ( 1,3 \right ),\left ( 3,9 \right ) \in R but \left ( 1,9 \right ) \notin R so R is not  transitive.

Hence, R is neither reflexive nor  symmetric and nor transitive.

Preparation Products

Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions