# Q.1 Determine whether each of the following relations are reflexive, symmetric and transitive:(v) Relation R in the set A of human beings in a town at a particular time given by(b) $R = \{(x,y): x\;and\;y\;live\;in\;the\;same\;locality\}$

$R = \{(x,y): x\;and\;y\;live\;in\;the\;same\;locality\}$

$\left ( x,x \right )\in R$ as $x$ and $x$ is same human being.So, it is reflexive.

$\left ( x,y \right )\in R$ means  $x\;and\;y\;live\;in\;the\;same\;locality$.

It is same as $y\;and\;x\;live\;in\;the\;same\;locality$  i.e. $\left ( y,x \right )\in R$.

So,it is symmetric.

$\left ( x,y \right ),\left ( y,z \right )\in R$ means  $x\;and\;y\;live\;in\;the\;same\;locality$ and $y\;and\;z\;live\;in\;the\;same\;locality$.

It implies that $x\;and\;z\;live\;in\;the\;same\;locality$ i.e. $\left ( x,z \right )\in R$.

Hence, it is reflexive, symmetric and
transitive.

## Related Chapters

### Preparation Products

##### JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
##### Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
##### Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 6999/- ₹ 5/-
##### Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-