Get Answers to all your Questions

header-bg qa

Q.1 Determine whether each of the following relations are reflexive, symmetric and
transitive:

(v). Relation R in the set A of human beings in a town at a particular time given by

(d) R = \{(x, y) : x\;is\;wife\;of\;y\}

Answers (1)

best_answer

R = \{(x, y) : x\;is\;wife\;of\;y\}

\left ( x,y \right ) \in R means x\;is\;wife\;of\;y but  x\;is\;not\, wife\;of\;x i.e.\left ( x,x \right ) \notin R.

So, it is not reflexive.

\left ( x,y \right ) \in R means x\;is\;wife\;of\;y but  y\;is\;not\, wife\;of\;x i.e.\left ( y,x \right ) \notin R.

So, it is not symmetric.

Let, \left ( x,y \right ),\left ( y,z \right ) \in R means x\;is\;wife\;of\;y and y\;is\;wife\;of\;z.

This case is not possible so it is not transitive.

Hence, it is not  reflexive, symmetric and
transitive.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads