21. b) Discuss the continuity of the following functions:
f (x) = \sin x - \cos x

Answers (1)

Given function is
f (x) = \sin x - \cos x
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x   and    h(x) = cos x
Let suppose  x = c + h
if  x \rightarrow c , \ then \ h \rightarrow 0
g(c) = \sin c\\ \lim_{x\rightarrow c}g(x) = \lim_{x\rightarrow c}\sin x = \lim_{h\rightarrow 0}\sin (c+h)\\ We \ know \ that\\ \sin(a+b) = \sin a \cos b + \cos a\sin b\\ \lim_{h\rightarrow 0}\sin (c+h) = \lim_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h) = \lim_{h\rightarrow 0}\sin c\cos h + \lim_{h\rightarrow 0}\cos c \sin h
                                                                                                =\sin c\cos 0 + \cos c \sin 0 = \sin c
\lim_{x\rightarrow c}g(x) = g(c)
Hence, function g(x) = \sin x is a continuous function
Now,
h(x) = cos x
Let suppose  x = c + h
if  x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \cos c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\cos x = \lim_{h\rightarrow 0}\cos (c+h)\\ We \ know \ that\\ \cos(a+b) = \cos a \cos b + \sin a\sin b\\ \lim_{h\rightarrow 0}\cos (c+h) = \lim_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h) = \lim_{h\rightarrow 0}\cos c\cos h + \lim_{h\rightarrow 0}\sin c \sin h
                                                                                                 =\cos c\cos 0 + \sin c \sin 0 = \cos c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, function h(x) = \cos x is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions