Q&A - Ask Doubts and Get Answers
Q

Figure 3.33 shows a potentiometer with a cell of 2.0 V and internal resistance 0.40 Ω maintaining a potential drop across the resistor wire AB. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents upto a few mA) gives a (c)

3.22 Figure 3.33 shows a potentiometer with a cell of 2.0 V and internal resistance 0.40 Ω maintaining a potential drop across the resistor wire AB. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents upto a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, a very high resistance of 600 kΩ is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emf ε and the balance point found similarly, turns out to be at 82.3 cm length of the wire.

(c) Is the balance point affected by this high resistance?

 

Answers (1)
Views

No, the Balance point is not affected by high resistance. High resistance limits the current to galvanometer wire. The balance point is obtained by moving the joe key on the potentiometer wire and current through potentiometer wire is constant. The balance point is the point when the current through galvanometer becomes zero. The only duty of high resistance is to supply limited constant current to potentiometer wire.

Exams
Articles
Questions