Q&A - Ask Doubts and Get Answers
Q

Find dy/dx  in the following: y= sin ^ -1 1 - x ^2 / 1+ x ^2

12. Find dy/dx  in the following: y = \sin ^{-1 } \left ( \frac{1- x ^2 }{1+ x^2} \right ) , 0< x < 1

Answers (1)
Views

Given function is
y = \sin ^{-1} \left ( \frac{1 - x^2 }{1+ x^2 } \right )
We can rewrite it as
\sin y = \ \left ( \frac{1 - x^2 }{1+ x^2 } \right )
Let's consider x = \tan t
Then,
\frac{d(x)}{dx} = \frac{d(\tan t)}{dt}.\frac{dt}{dx} \ \ \ \ \ \ \ \ \ (by \ chain \ rule)
1 = \sec^2 t . \frac{dt}{dx}\\ \frac{dt}{dx} = \frac{1}{\sec^2t} = \frac{1}{1+\tan ^2t} = \frac{1}{1+x^2}\ \ \ \ \ \ \ (\because \sec^2t=1+\tan^2t \ and \ x = \tan t)
Now,
\frac{1-x^2}{1+x^2} = \frac{1-\tan^2t }{1+\tan^2t} = \cos 2t \ \ \ \ \ \ (\because \cos 2x = \frac{1-\tan^2x }{1+\tan^2x} )
Our equation reduces to 
\sin y = \cos 2t
Now, differentiation w.r.t. x is
\frac{d(\sin y)}{dx} = \frac{d(\cos2t)}{dt}.\frac{dt}{dx}
\cos y\frac{dy}{dx} = 2(-\sin 2t).\frac{1}{1+x^2} = \frac{-2\sin2t}{1+x^2}= \frac{-2.\frac{2\tan t}{1+\tan^2t}}{1+x^2} =\frac{-2.\frac{2x}{1+x^2}}{1+x^2} =\frac{-4x}{(1+x^2)^2}
                                                                                                                                                               (\because \sin 2x = \frac{2\tan x}{1+\tan^2x} \ and \ x = \tan t)
\sin y = \ \left ( \frac{1 - x^2 }{1+ x^2 } \right )\Rightarrow \cos y = \frac{2x}{1+x^2}
\frac{2x}{1+x^2}\frac{dy}{dx} = \frac{-4x}{(1+x^2)^2}
\frac{dy}{dx} = \frac{-2}{(1+x^2)}
Therefore, the answer is  \frac{-2}{1+x^2}

Exams
Articles
Questions