# 11. Find the angle between the following pair of lines:     (i)     $\frac{x-2}{2}= \frac{y-1}{5}= \frac{z+3}{-3}$ and $\frac{x+2}{-1}= \frac{y-4}{8}= \frac{z-5}{4}$

Given lines are;

$\frac{x-2}{2}= \frac{y-1}{5}= \frac{z+3}{-3}$  and  $\frac{x+2}{-1}= \frac{y-4}{8}= \frac{z-5}{4}$

So, we two vectors $\vec{b_{1}}\ and\ \vec{b_{2}}$ which are parallel to the pair of above lines respectively.

$\vec{b_{1}}\ =2\widehat{i}+5\widehat{j}-3\widehat{k}$   and  $\vec{b_{2}}\ =-\widehat{i}+8\widehat{j}+4\widehat{k}$

To find the angle A between the pair of lines $\vec{b_{1}}\ and\ \vec{b_{2}}$ we have the formula;

$\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |$

Then we have

$\vec{b_{1}}.\vec{b_{2}} =(2\widehat{i}+5\widehat{j}-3\widehat{k}).(-\widehat{i}+8\widehat{j}+4\widehat{k})$

$=-2+40-12 = 26$

and $|\vec{b_{1}}| = \sqrt{2^2+5^2+(-3)^2} = \sqrt{38}$

$|\vec{b_{2}}| = \sqrt{(-1)^2+(8)^2+(4)^2} = \sqrt{81} = 9$

Therefore we have;

$\cos A = \left | \frac{26}{\sqrt{38} \times9} \right | = \frac{26}{9\sqrt{38}}$

or $A = \cos^{-1} \left ( \frac{26}{9\sqrt{38}} \right )$

## Related Chapters

### Preparation Products

##### Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
##### Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
##### Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
##### Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-