Q : 9         Find the area of the region bounded by the parabola \small y=x^2 and \small y=|x|.
 

Answers (1)
G Gautam harsolia

exeecise 8.1
We can clearly see that given area is symmetrical about y-axis
Therefore,
Area of OCAO = Area of OBDO
Point of intersection of y=x^2 \ and \ y = |x|  is  (1 , 1)  and (-1 , 1)
Now,
Area od OCAO = Area OAM - Area of OCMO
Area of OAM = \frac{1}{2}.OM.AM = \frac{1}{2}.1.1 = \frac{1}{2}
 Area of OCMO = \int_{0}^{1}ydx= \int_{0}^{1}x^2dx= \left [ \frac{x^3}{3} \right ]_{0}^{1}= \frac{1}{3}
Therefore,
Area od OCAO =\frac{1}{2}- \frac{1}{3}= \frac{1}{6}
Now,
Area of the region bounded by the parabola \small y=x^2 and \small y=|x| is = 2 X Area od OCAO  =2\times \frac{1}{6} = \frac{1}{3}  Units

Exams
Articles
Questions