10. Find the LCM of the following numbers :
(a) 9 and 4      (b) 12 and 5     (c) 6 and 5     (d) 15 and 4
Observe a common property in the obtained LCMs. Is LCM the product of two numbers in each case? 

Answers (1)
P Pankaj Sanodiya

(a) LCM = 2 \times 2 \times 3 \times 3 = 36

\begin{array}{|c|c|}\hline 2 & {9,4} \\ \hline 2 & {9,2} \\ \hline 3 & {9,1} \\ \hline 3 & {3,1} \\ \hline & {1,1} \\ \hline\end{array}

(b) LCM = 2 \times 2 \times 3 \times 5 = 60

\begin{array}{|c|c|}\hline 2 & {12,5} \\ \hline 2 & {6,5} \\ \hline 3 & {3,5} \\ \hline 5 & {1,5} \\ \hline & {1,1} \\ \hline\end{array}

(c) LCM = 2 \times 3 \times 5 = 30

\begin{array}{|c|c|}\hline 2 & {6,5} \\ \hline 3 & {3,5} \\ \hline 5 & {1,5} \\ \hline & {1,1} \\ \hline\end{array}

(d) LCM = 2 \times 3 \times 5 = 30

\begin{array}{|c|c|}\hline 2 & {15,4} \\ \hline 2 & {15,2} \\ \hline 3 & {15,1} \\ \hline 5 & {5,1} \\ \hline & {1} \\ \hline\end{array}

Yes, it can be observed that in each case, the LCM of the given numbers is the product of these numbers.

When two numbers are co-prime, their LCM is the product of those numbers. Also, in each case, LCM is a multiple of 3.

Exams
Articles
Questions