# 16   Find the shortest distance between the lines whose vector equations are $\overrightarrow{r}=(\widehat{i}+2\widehat{j}+3\widehat{k})+ \lambda (\widehat{i}-3\widehat{j}+2\widehat{k})$ and              $\overrightarrow{r}=(4\widehat{i}+5\widehat{j}+6\widehat{k})+ \mu (2\widehat{i}+3\widehat{j}+\widehat{k})$.

D Divya Prakash Singh

Given two equations of line

$\overrightarrow{r}=(\widehat{i}+2\widehat{j}+3\widehat{k})+ \lambda (\widehat{i}-3\widehat{j}+2\widehat{k})$ $\overrightarrow{r}=(4\widehat{i}+5\widehat{j}+6\widehat{k})+ \mu (2\widehat{i}+3\widehat{j}+\widehat{k})$ in the vector form.

So, we will apply the distance formula  for knowing the distance between two lines $\vec{r} =\vec{a_{1}}+\lambda{b_{1}}$   and   $\vec{r} =\vec{a_{2}}+\lambda{b_{2}}$

$d= \left | \frac{\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )}{\left | \vec{b_{1}}\times \vec{b_{2}} \right |} \right |$

After comparing the given equations, we obtain

$\vec{a_{1}} = \widehat{i}+2\widehat{j}+3\widehat{k}$                $\vec{b_{1}} = \widehat{i}-3\widehat{j}+2\widehat{k}$

$\vec{a_{2}} = 4\widehat{i}+5\widehat{j}+6\widehat{k}$             $\vec{b_{2}} = 2\widehat{i}+3\widehat{j}+\widehat{k}$

$\vec{a_{2}}-\vec{a_{1}} = (4\widehat{i}+5\widehat{j}+6\widehat{k}) - (\widehat{i}+2\widehat{j}+3\widehat{k})$

$= 3\widehat{i}+3\widehat{j}+3\widehat{k}$

Then calculating the determinant value numerator.

$\vec{b_{1}}\times\vec{b_{2}} = \begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ 1& -3 &2 \\ 2& 3& 1 \end{vmatrix}$

$= (-3-6)\widehat{i}-(1-4)\widehat{j}+(3+6)\widehat{k} = -9\widehat{i}+3\widehat{j}+9\widehat{k}$

That implies, $\left | \vec{b_{1}}\times\vec{b_{2}} \right | = \sqrt{(-9)^2+(3)^2+(9)^2}$

$= \sqrt{81+9+81} = \sqrt{171} =3\sqrt{19}$

$\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )=(-9\widehat{i}+3\widehat{j}+9\widehat{k})(3\widehat{i}+3\widehat{j}+3\widehat{k})$

$= (-9\times3)+(3\times3)+(9\times3) = 9$

Now, after substituting the value in the above formula we get,

$d= \left | \frac{9}{3\sqrt{19}} \right | = \frac{3}{\sqrt{19}}$

Therefore,$\frac{3}{\sqrt{19}}$ is the shortest distance between the two given lines.



Exams
Articles
Questions