# 28. Find the values of k so that the function f is continuous at the indicated point in Exercises $f (x) = \left\{\begin{matrix} kx + 1 & if x \leq \pi \\ \cos x & if x > \pi \end{matrix}\right. \: \: at \: \: x = \pi$

Given function is
$f (x) = \left\{\begin{matrix} kx + 1 & if x \leq \pi \\ \cos x & if x > \pi \end{matrix}\right.$
When x = $\pi$
For the function to be continuous
f($\pi$) = R.H.L. = LH.L.
$f(\pi) = k\pi+1\\ \lim_{x\rightarrow \pi^-}f(x)= k\pi+1\\ \lim_{x\rightarrow \pi^+}f(x) = \cos \pi = -1\\ f(\pi) = \lim_{x\rightarrow \pi^-}f(x) = \lim_{x\rightarrow \pi^+}f(x)\\ k\pi+1 = -1\\ k = \frac{-2}{\pi}$
Hence,  the values of k so that the function f is continuous at x= $\pi$ is $\frac{-2}{\pi}$

## Related Chapters

### Preparation Products

##### JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
##### Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
##### Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
##### Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-