# 5 Find the vector and cartesian equations of the planes     (b)     that passes through the point (1,4, 6) and the normal vector to the plane is $\widehat{i}-2\widehat{j}+\widehat{k}$.

Given the point $A (1,4,6)$ and the normal vector $\widehat{n}$ which is perpendicular to the plane is $\widehat{n} = \widehat{i}-2\widehat{j}+\widehat{k}$

The position vector of point A is $\vec {a} = \widehat{i}+4\widehat{j}+6\widehat{k}$

So, the vector equation of the plane would be given by,

$(\vec{r}-\vec{a}).\widehat{n} = 0$

Or $\left [ \vec{r}-(\widehat{i}+4\widehat{j}+6\widehat{k}) \right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0$

where $\vec{r}$ is the position vector of any arbitrary point $A(x,y,z)$ in the plane.

$\therefore$ $\vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k}$

Therefore, the equation we get,

$\left [ (x\widehat{i}+y\widehat{j}+z\widehat{k})-(\widehat{i}+4\widehat{j}+6\widehat{k}) \right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0$

$\Rightarrow \left [(x-1)\widehat{i}+(y-4)\widehat{j}+(z-6)\widehat{k}\right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0$

$(x-1)-2(y-4)+(z-6)=0$

$\Rightarrow x-2y+z+1=0$

So, this is the required Cartesian equation of the plane.

## Related Chapters

### Preparation Products

##### Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
##### Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
##### Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
##### Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-