Get Answers to all your Questions

header-bg qa

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector 3\widehat{i}+5\widehat{j}-6\widehat{k}.

Answers (1)

best_answer

We have given the distance between the plane and origin equal to 7 units and normal to the vector 3\widehat{i}+5\widehat{j}-6\widehat{k}.

So, it is known that the equation of the plane with position vector \vec{r} is given by, the relation,

\vec{r}.\widehat{n} =d , where d is the distance of the plane from the origin.

Calculating \widehat{n};

\widehat{n} = \frac{\vec{n}}{|\vec{n}|} = \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{(3)^2+(5)^2+(6)^2}} = \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{70}}

\vec{r}.\left ( \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{70}} \right ) = 7  is the vector equation of the required plane.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads