Get Answers to all your Questions

header-bg qa

Q.10 Give an example of a relation.

(ii) Which is transitive but neither reflexive nor symmetric.

Answers (1)

best_answer

Let  

R = \left \{ \left ( x,y \right ): x> y \right \}

Now for x\in R ,(x,x)\notin R so it is not reflexive.

Let (x,y) \in R  i.e. x> y

Then y> x is not possible i.e. (y,x) \notin R . So it is not symmetric.

Let (x,y) \in R  i.e. x> y    and  (y,z) \in R i.e.y> z

we can write this as x> y> z

Hence,x> z  i.e. (x,z)\in R. So it is transitive.

Hence, it is transitive but neither reflexive nor symmetric.

 

 

 

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads