Q.4  If f(x) = \frac{4x + 3}{6x - 4}, x \neq \frac{2}{3} show that fof (x) = x,  for all x \neq\frac{2}{3}. What is the inverse of f?

Answers (1)

f(x) = \frac{4x + 3}{6x - 4}, x \neq \frac{2}{3}

fof (x) = x

(fof) (x) = f(f(x))

                    =f( \frac{4x + 3}{6x - 4})

                  =\frac{4( \frac{4x + 3}{6x - 4}) +3}{6( \frac{4x + 3}{6x - 4}) -4}

                = \frac{16x+12+18x-12}{24x+1824x+16}

                 = \frac{34x}{34}

                 \therefore fof(x) = x                ,  for all  x \neq \frac{2}{3}

\Rightarrow fof=Ix

Hence,the given function fis invertible and the inverse of f is f itself.

 

 

 

 

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 999/- ₹ 499/-
Buy Now
Foundation 2021 Class 9th Maths

Master Maths with "Foundation course for class 9th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 999/- ₹ 499/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions