Q.7 In each of the following cases, state whether the function is one-one, onto or
bijective. Justify your answer.

(ii) f : R\rightarrow R defined by f(x) = 1 + x^2

Answers (1)

f : R\rightarrow R

f(x) = 1 + x^2 

Let  there  be  (a,b) \in R  such that f(a)=f(b)

                                                          1+a^{2} = 1 +b^{2}

                                                               a^{2}=b^{2}

                                                                 a = \pm b

For   f(1)=f(-1)=2   and  1\neq -1

\therefore f is not one-one.

Let there be -2 \in R   (-2 in codomain of R)

                                   f(x) = 1 + x^2 = -2 

        There does not exists any x in domain R  such that  f(x) = -2                        

                           \therefore  f is not onto.

Hence, f is neither one-one nor onto.

   

 

 

 

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions