Q.7 In each of the following cases, state whether the function is one-one, onto or
bijective. Justify your answer.

(i) f: R\rightarrow R defined by f(x) = 3 -4x

Answers (1)

f: R\rightarrow R

f(x) = 3 -4x

Let  there  be  (a,b) \in R  such that f(a)=f(b)

                                                          3-4a = 3 -4b

                                                               -4a = -4b

                                                                    a = b

\therefore f is one-one.

Let there be y \in R,    y = 3 -4x

                                    x = \frac{(3-y)}{4}

                                 f(x) = 3 -4x

Puting value of x,    f(\frac{3-y}{4}) = 3 - 4(\frac{3-y}{4})

                               f(\frac{3-y}{4}) = y

                           \therefore  f is onto.

f is both one-one and onto hence, f is bijective.

   

 

 

 

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions