2. In Fig. 6.40, \angle X = 62°, \angle XYZ = 54°. If YO and ZO are the bisectors of \angle XYZ and \angle XZY respectively of \Delta XYZ, find \angle OZY and \angle YOZ.

                

Answers (1)


We have 
\angleX = 62^0\angleXYZ = 54^0
YO and ZO bisects the \angleXYZ and \angleXZY
Now, In \DeltaXYZ, by using angle sum property
\angleXYZ + \angleYZX + \angleZXY = 180^0

So, \angleYZX = 180^0-54^0-62^0
      \angleYZX = 64^0

and, \angleOYZ = 54^0/2 = 27^0 also, \angleOZY = 32^0

Now, in \DeltaOYZ 
\angleY + \angleO + \angleZ = 180^0  [\angleY = 32^0 and \angleZ = 64^0]
So, \angleYOZ = 121^0

Preparation Products

Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
Buy Now
Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Exams
Articles
Questions