Q: 4     In Fig. 9.16, P is a point in the interior of a parallelogram ABCD. Show that
               (i)  \small ar(APB)+ar(PCD) = \frac{1}{2}ar(ABCD)
             

              [Hint : Through P, draw a line parallel to AB.]

                

Answers (1)
M manish


We have a ||gm ABCD and AB || CD, AD || BC.  Through P, draw a line parallel to AB
 Now, \DeltaAPB and ||gm ABEFare on the same base AB and between the same parallels EF and AB.
Therefore, ar (\DeltaAPB) = 1/2 . ar(ABEF)...............(i)
Similarly, ar (\DeltaPCD ) = 1/2 . ar (EFDC) ..............(ii)
Now, by adding both equations, we get
\small ar(APB)+ar(PCD) = \frac{1}{2}ar(ABCD)

Hence proved.

 

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions