Q: 6     In Fig. \small 9.25, diagonals AC and BD of quadrilateral ABCD intersect at O such that. If \small AB=CD, then show that:

             (i)  \small ar(DOC)=ar(AOB)

            [Hint: From D and B, draw perpendiculars to AC.]

            

Answers (1)


We have ABCD is quadrilateral whose diagonals AC and BD intersect at O. And OB = OD, AB = CD
Draw DE \perp AC and FB \perpAC

In \DeltaDEO and \Delta BFO
\angleDOE = \angleBOF [vertically opposite angle]
\angleOED = \angleBFO [each 90^0]
OB = OD [given]

Therefore, by AAS congruency
\DeltaDEO \cong  \Delta BFO
\Rightarrow DE = FB [by CPCT]

and ar( \DeltaDEO) =  ar(\DeltaBFO) ............(i)

Now, In  \DeltaDEC and  \DeltaABF
\angleDEC = \angleBFA [ each 90^0]
DE = FB
DC = BA [given]
So, by RHS congruency 
\DeltaDEC \cong  \Delta BFA
\angle1 = \angle2 [by CPCT]
and, ar( \DeltaDEC) =  ar(\DeltaBFA).....(ii)

By adding equation(i) and (ii), we get
\small ar(DOC)=ar(AOB)
Hence proved.

 

Most Viewed Questions

Related Chapters

Preparation Products

Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 40000/-
Buy Now
Knockout NEET 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions