# Q7  Integrate the functions $x \sin ^{ -1} x$

G Gautam harsolia

Given function is
$f(x)=x.\sin^{-1} x$
We will use integration by parts method
$\int x.\sin^{-1} xdx= \sin^{-1} x.\int xdx - \int(\frac{d(\sin^{-1} x)}{dx}.\int x dx)dx\\ \\ \int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
Now, we need to integrate $\int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \frac{1-x^2}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}} \right )dx\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \sqrt{1-x^2}-\frac{1}{\sqrt{1-x^2}} \right )dx\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\left ( \int \sqrt{1-x^2}dx-\int \frac{1}{\sqrt{1-x^2}}dx \right )\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{1}{2}\left ( \frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}\sin^{-1}x-\sin^{-1}x \right )\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{x\sqrt{1-x^2}}{4} -\frac{\sin^{-1}x}{4}+C$
Put this value in our equation

Therefore, the answer is  $\int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x\sqrt{1-x^2}}{4}$

Exams
Articles
Questions