Get Answers to all your Questions

header-bg qa

Q.9

Let f : N \rightarrow N be defined by

                                f(n) = \left\{\begin{matrix} \frac{n+1}{2} & if\;n\;is\;odd \\ \frac{n}{2} & if\;n\;is\;even \end{matrix}\right.   for all n\in N.

State whether the function f is bijective. Justify your answer.

Answers (1)

best_answer

f : N \rightarrow N   ,  n\in N

    f(n) = \left\{\begin{matrix} \frac{n+1}{2} & if\;n\;is\;odd \\ \frac{n}{2} & if\;n\;is\;evem \end{matrix}\right.

Here we can observe,

 f(2)=\frac{2}{2}=1           and       f(1)=\frac{1+1}{2}=1

As we can see f(1)=f(2)=1  but 1\neq 2

\therefore     f is not one-one.

Let,n\in N    (N=co-domain)

case1   n be even

   For r \in N,      n=2r   

then there is 4r \in N such that f(4r)=\frac{4r}{2}=2r

case2   n be odd

For  r \in N,   n=2r+1

then there is 4r+1 \in N such that f(4r+1)=\frac{4r+1+1}{2}=2r +1

\therefore  f is onto.

f is not one-one but onto

hence, the function f is not bijective.

 

 

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads