Q. 15 Let R be the relation in the set \{}1, 2, 3, 4\} given by R = \{(1, 2), (2, 2), (1, 1), (4,4), (1, 3), (3, 3), (3, 2)\}. Choose the correct answer.

(A)  R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation.

 

Answers (1)

A = \{}1, 2, 3, 4\}

R = \{(1, 2), (2, 2), (1, 1), (4,4), (1, 3), (3, 3), (3, 2)\}

For every  a \in A  there is  (a,a) \in R

\therefore R is reflexive.

Given, (1,2) \in R  but  (2,1) \notin R 

\therefore R is not symmetric.

For  a,b,c \in A there are (a,b) \in R \, and \, (b,c) \in R  \Rightarrow (a,c) \in R

\therefore R is transitive.

Hence, R  is reflexive and transitive but not symmetric.

The correct answer is option B.

 

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions