Get Answers to all your Questions

header-bg qa

Q.9 Let ∗ be a binary operation on the set Q of rational numbers as follows:

(i)  a * b = a - b

Find which of the binary operations are commutative and which are associative.

Answers (1)


On the set Q ,the operation * is defines as  a * b = a - b.It is observed that:

\frac{1}{2}*\frac{1}{3}= \frac{1}{2}-\frac{1}{3}=\frac{1}{6}

\frac{1}{3}*\frac{1}{2}= \frac{1}{3}-\frac{1}{2}=\frac{-1}{6}

\therefore      \frac{1}{2}*\frac{1}{3}\neq \frac{1}{3}*\frac{1}{2}       here \frac{1}{2},\frac{1}{3} \in Q

Hence, the * operation is not commutative.

It can be observed that

(\frac{1}{2}*\frac{1}{3})*\frac{1}{4} = \left ( \frac{1}{2}-\frac{1}{3}\right )*\frac{1}{4}=\frac{1}{6}*\frac{1}{4}=\frac{1}{6}-\frac{1}{4}=\frac{-1}{12}

\frac{1}{2}*(\frac{1}{3}*\frac{1}{4})= \frac{1}{2}*\left ( \frac{1}{3} - \frac{1}{4}\right ) = \frac{1}{2}*\frac{1}{12} = \left ( \frac{1}{2} - \frac{1}{12} \right ) = \frac{5}{12}


\left ( \frac{1}{2}*\frac{1}{3} \right )*\frac{1}{4}\neq \frac{1}{2}*(\frac{1}{3}*\frac{1}{4})  for all \frac{1}{2},\frac{1}{3}, \frac{1}{4} \in Q


The operation * is not associative.













Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support