# 21) Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?

Let r be the radius of base and h be the height of the cylinder
The volume of the cube (V) = $\pi r^2 h$
It is given that the volume of cylinder = 100 $cm^3$
$\pi r^2 h = 100\Rightarrow h = \frac{100}{\pi r^2}$
Surface area of cube(A) = $2\pi r(r+h)$
$A(r)= 2\pi r(r+\frac{100}{\pi r^2})$
$= 2\pi r ( \frac{\pi r^3+100}{\pi r^2}) = \frac{2\pi r^3+200}{ r} = 2\pi r^2+\frac{200}{r}$
$A^{'}(r) = 4\pi r + \frac{(-200)}{r^2} \\ A^{'}(r)= 0\\ 4\pi r^3 = 200\\ r^3 = \frac{50}{\pi}\\ r = \left ( \frac{50}{\pi} \right )^{\frac{1}{3}}$
Hence, $r = (\frac{50}{\pi})^\frac{1}{3}$ is the critical point
$A^{''}(r) = 4\pi + \frac{400r}{r^3}\\ A^{''}\left ( (\frac{50}{\pi})^\frac{1}{3} \right )= 4\pi + \frac{400}{\left ( (\frac{50}{\pi})^\frac{1}{3} \right )^2} > 0$
Hence, $r = (\frac{50}{\pi})^\frac{1}{3}$ is the point of minima
$h = \frac{100}{\pi r^2} = \frac{100}{\pi \left ( (\frac{50}{\pi})^\frac{1}{3} \right )^2} = 2.(\frac{50}{\pi})^\frac{1}{3}$
Hence, $r = (\frac{50}{\pi})^\frac{1}{3}$ and $h = 2.(\frac{50}{\pi})^\frac{1}{3}$ are  the dimensions of the can which has the minimum surface area

## Related Chapters

### Preparation Products

##### JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
##### Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
##### Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
##### Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-