Q.3.    Say true or false and justify your answer:

           (i)\: 10\times 10^{11}=100^{11}            (ii)\: 2^{3}> 5^{2}       (iii)\: 2^{3}\times 3^{2}= 6^{5}         (iv)\: 3^{0}=(1000)^{0}

Answers (1)
S seema garhwal

(i)\: 10\times 10^{11}=100^{11}

can be simplified as 

LHS:10^{(1+11)}

             =10^{(12)}

Since , LHS \neq RHS

Thus, it is false

(ii)\: 2^{3}> 5^{2}

can be simplified as 

LHS=2^3=8

RHS=5^2=25

Since,LHS\ngtr RHS

Thus, it is false

(iii)\: 2^{3}\times 3^{2}= 6^{5}

can be simplified as 

LHS:2^3\times 3^2=8\times 9=72

RHS: 6^5=7776

Since , LHS \neq RHS

Thus, it is false

(iv)\: 3^{0}=(1000)^{0}

can be simplified as 

LHS: 3^0=1

RHS:1000^0=1

Since, LHS = RHS

Thus, it is true.

 

 

 

 

 

 

Exams
Articles
Questions