Q : 3    Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Answers (1)
M manish


Let ABCD is a parallelogram. So, AB || CD and AD || BC and we know that Diagonals bisects each other. Therefore, AO = OC and BO = OD

Since OD = BO 
Therefore, ar (\DeltaBOC) = ar (\DeltaDOC)...........(a)   ( since OC is the median of triangle CBD)

Similarly, ar(\DeltaAOD) = ar(\DeltaDOC) ............(b)     ( since OD is the median of triangle ACD)

and, ar (\DeltaAOB) = ar(\DeltaBOC)..............(c)           ( since OB  is the median of triangle ABC)

From eq (a), (b) and eq (c), we get

  ar (\DeltaBOC) = ar (\DeltaDOC)= ar(\DeltaAOD) =  (\DeltaAOB)

Thus, the diagonals of ||gm divide it into four equal triangles of equal area.

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions