# Q : 3    Show that the diagonals of a parallelogram divide it into four triangles of equal area. Let ABCD is a parallelogram. So, AB || CD and AD || BC and we know that Diagonals bisects each other. Therefore, AO = OC and BO = OD

Since OD = BO
Therefore, ar (BOC) = ar (DOC)...........(a)   ( since OC is the median of triangle CBD)

Similarly, ar(AOD) = ar(DOC) ............(b)     ( since OD is the median of triangle ACD)

and, ar (AOB) = ar(BOC)..............(c)           ( since OB  is the median of triangle ABC)

From eq (a), (b) and eq (c), we get

ar (BOC) = ar (DOC)= ar(AOD) =  (AOB)

Thus, the diagonals of ||gm divide it into four equal triangles of equal area.

## Related Chapters

### Preparation Products

##### JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
##### Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
##### Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
##### Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-