Q.7 Show that the relation R in the set A of all the books in a library of a college,
given by R = \{(x, y) : x \;and\;y\;have\;same\;number\;of\;pages\} is an equivalence
relation.

Answers (1)

 A = all the books in a library of a college

R = \{(x, y) : x \;and\;y\;have\;same\;number\;of\;pages\}

(x,x) \in R  because  x and x have same number of pages so it is reflexive.

Let  (x,y) \in R  means x and y have same number of pages.

Since,y and x have same number of pages so  (y,x) \in R  .

Hence, it is symmetric.

Let  (x,y) \in R  means x and y have same number of pages.

 and  (y,z) \in R  means y and z have same number of pages.

This states,x and z also have same number of pages i.e.(x,z) \in R

Hence, it is transitive.

Thus, it is reflexive, symmetric and transitive i.e. it is an equivalence
relation.?

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Foundation 2021 Class 9th Maths

Master Maths with "Foundation course for class 9th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions