Get Answers to all your Questions

header-bg qa

Q.2 Show that the relation R in the set R of real numbers, defined as
R = \{(a, b) : a \leq b^2 \} is neither reflexive nor symmetric nor transitive.

Answers (1)

best_answer

R = \{(a, b) : a \leq b^2 \}

Taking  

\left ( \frac{1}{2},\frac{1}{2} \right )\notin R

and 

\left ( \frac{1}{2} \right )> \left ( \frac{1}{2} \right )^{2}

So,R is not reflexive.

Now,

\left ( 1,2 \right )\in R because    1< 4.

But, 4\nless 1  i.e. 4 is not less than 1 

So,\left ( 2,1 \right )\notin R

Hence, it is not symmetric.

\left ( 3,2 \right )\in R\, \, and \, \, \left ( 2,1.5 \right )\in R   as 3< 4\, \, and \, \, 2< 2.25

 Since \left ( 3,1.5 \right )\notin R  because 3\nless 2.25

Hence, it is not transitive.

Thus, we can conclude that it is neither reflexive, nor symmetric ,nor transitive. 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads