16. \sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2} then x is equal to

        (A)    0,\frac{1}{2}

        (B)    1,\frac{1}{2}

        (C)    0

        (D)    \frac{1}{2}        

Answers (1)

Given the equation: \sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}

we can migrate the \sin^{-1}(1-x) term to the R.H.S.

then we have;

- 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)

or - 2\sin^{-1}x =\cos^{-1}(1-x)                               ............................(1)

from    \left [\because \cos^{-1}(1-x) + \sin^{-1}(1-x) = \frac{\pi}{2} \right ]

Take \sin^{-1}x = \Theta  \Rightarrow \sin \Theta = x    or    \cos \Theta = \sqrt{1-x^2}.

So, we conclude that;

\sin^{-1}x = \cos^{-1}\left ( \sqrt{1-x^2} \right )

Therefore we can put the value of \sin^{-1}x in equation (1)  we get,

- 2\cos^{-1}\left ( \sqrt{1-x^2} \right ) =\cos^{-1}(1-x)

Putting x= sin y, in the above equation; we have then,

\Rightarrow - 2\cos^{-1}\left ( \sqrt{1-(\sin y)^2} \right ) =\cos^{-1}(1-\sin y )

\Rightarrow - 2\cos^{-1}\left ( \sqrt{\cos^2 y} \right ) =\cos^{-1}(1-\sin y )

\Rightarrow - 2\cos^{-1}\left ( \cos y \right ) =\cos^{-1}(1-\sin y )

\Rightarrow \cos(-2y) = 1-\sin y

\Rightarrow - 2y=\cos^{-1}(1-\sin y )

 \Rightarrow 1- 2\sin^2 y = 1-\sin y

\Rightarrow 2\sin^2 y - \sin y = 0

\Rightarrow \sin y(2 \sin y -1) = 0

So, we have the solution;

\sin y = 0\ or\ \frac{1}{2}    Therefore we have x = 0\ or\ x= \frac{1}{2}.

When we have x= \frac{1}{2}, we can see that :

L.H.S. = \sin ^{-1}\left ( 1 - \frac{1}{2} \right ) - 2\sin^{-1}\frac{1}{2} = - \sin^{-1}\frac{1}{2} = -\frac{\pi}{6}

So, it is not equal to the R.H.S. -\frac{\pi}{6} \neq \frac{\pi}{2}

Thus we have only one solution which is x = 0

Hence the correct answer is (C).

Most Viewed Questions

Related Chapters

Preparation Products

Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 40000/-
Buy Now
Knockout NEET 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions