# Q : 8         Solve system of linear equations, using matrix method.                 $2x-y=-2$                $3x+4y=3$

D Divya Prakash Singh

The given system of equations

$2x-y=-2$

$3x+4y=3$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &-1 \\ 3& 4 \end{bmatrix}$$X = \begin{bmatrix} x\\y \end{bmatrix}$  and $B = \begin{bmatrix} -2\\3 \end{bmatrix}$

we have,

$|A| = 8+3=11 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3& 2 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} -2\\3 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -8+3\\ 6+6 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -5\\12 \end{bmatrix}= \begin{bmatrix} -\frac{5}{11}\\ \\-\frac{12}{11} \end{bmatrix}$

Hence the solutions of the given system of equations;

$x =\frac{-5}{11} \ and\ y =\frac{12}{11}.$

Exams
Articles
Questions