# Q : 10       Solve system of linear equations, using matrix method.                 $\small 5x+2y=3$                $\small 3x+2y=5$

D Divya Prakash Singh

The given system of equations

$\small 5x+2y=3$

$\small 3x+2y=5$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 5 &2 \\ 3& 2 \end{bmatrix}$$X = \begin{bmatrix} x\\y \end{bmatrix}$  and $B = \begin{bmatrix} 3\\5 \end{bmatrix}$

we have,

$|A| = 10-6=4 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3& 5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3 & 5 \end{bmatrix}\begin{bmatrix} 3\\5 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 6-10\\ -9+25 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} -4\\16 \end{bmatrix}= \begin{bmatrix} -1\\4 \end{bmatrix}$

Hence the solutions of the given system of equations;

$x =-1 \ and\ y =4.$

Exams
Articles
Questions