Get Answers to all your Questions

header-bg qa

3.      Solve the following Linear Programming Problems graphically:               

            Maximise  Z = 5x + 3y

           Subject to 3x + 5y \leq 15,5x+2y\leq 10, x\geq 0,y\geq 0

           Show that the minimum of Z occurs at more than two points.

          

          

Answers (1)

best_answer

The region determined by constraints,  3x + 5y \leq 15,5x+2y\leq 10, x\geq 0,y\geq 0 is as follows :

          Chapter 12  Linear Programming  Question 3

The corner points of feasible region are A(0,3),B(0,0),C(2,0),D(\frac{20}{19},\frac{45}{19})

 The value of these points at these corner points are : 

Corner points            Z = 5x + 3y  
        A(0,3)                9  

        B(0,0)

              0  
       C(2,0)               10  
        D(\frac{20}{19},\frac{45}{19})                  \frac{235}{19}  Maximum 

The maximum value of Z is  \frac{235}{19}at D(\frac{20}{19},\frac{45}{19})

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads