20) The slope of the tangent to the curve x = t^2 + 3t - 8, y = 2t^2 - 2t - 5 at the point
(2,– 1) is

 A ) 22/7 

B ) 6/7 

C ) 7/6 

D ) -6 /7 

Answers (1)

Given curves are 
x = t^2 + 3t - 8 \ and \ y = 2t^2 - 2t - 5
At point (2,-1)
t^2 + 3t - 8 = 2\\ t^2+3t-10=0\\ t^2+5t-2t-10=0\\ (t+5)(t-2) = 0\\ t = 2 \ and \ t = 5
Similarly,
2t^2-2t-5 = -1\\ 2t^2-2t-4=0\\ 2t^2-4t+2t-4=0\\ (2t+2)(t-2)=0\\ t = -1 \ and \ t = 2
The common value between two is t = 2 
Hence, we find the slope of the tangent at t = 2
We know that the slope of the tangent at a  given point is given by \frac{dy}{dx}
\frac{dy}{dt} = 4t - 2
\frac{dx}{dt} = 2t + 3
\left ( \frac{dy}{dx} \right )_{t=2} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4t-2}{2t+3} = \frac{8-2}{4+3} = \frac{6}{7}
Hence, (B) is the correct answer

Most Viewed Questions

Related Chapters

Preparation Products

Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 40000/-
Buy Now
Knockout NEET 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions