1.(iv) \small \Delta ABC and  \small \Delta DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig.). If AD is extended to intersect BC at P, show that

(iv) AP is the perpendicular bisector of BC.

               

Answers (1)

In the previous part we have proved that   \Delta BPD\ \cong \ \Delta CPD.

Thus by c.p.c.t. we can say that  :       \angle BPD\ =\ \angle CPD

Also,                                                         BP\ =\ CP

SInce BC is a straight line, thus  :           \angle BPD\ +\ \angle CPD\ =\ 180^{\circ}

or                                                                                    2\angle BPD\ =\ 180^{\circ}

or                                                                                       \angle BPD\ =\ 90^{\circ}

Hence it is clear that  AP is a perpendicular bisector of line BC.

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions