Using elementary transformations, find the inverse of each of the matrices, if it exists in Exercises 1 to 17.    Q1.    $\begin{bmatrix}1&-1\\2&3 \end{bmatrix}$

S seema garhwal

Use the elementary transformation we can find the inverse as follows

$A=\begin{bmatrix}1&-1\\2&3 \end{bmatrix}$

$A=IA$

$\Rightarrow$          $\begin{bmatrix}1&-1\\2&3 \end{bmatrix}$ $= \begin{bmatrix}1&0\\0&1 \end{bmatrix}A$

$R_2\rightarrow R_2-2R_1$

$\Rightarrow$          $\begin{bmatrix}1&-1\\0&5 \end{bmatrix}$ $= \begin{bmatrix}1&0\\-2&1 \end{bmatrix}A$

$R_2\rightarrow \frac{R_2}{5}$

$\Rightarrow$          $\begin{bmatrix}1&-1\\0&1 \end{bmatrix}$ $= \begin{bmatrix}1&0\\\frac{-2}{5}&\frac{1}{5} \end{bmatrix}A$

$R_1\rightarrow R_1+R_2$

$\Rightarrow$          $\begin{bmatrix}1&0\\0&1 \end{bmatrix}$ $= \begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\\frac{-2}{5}&\frac{1}{5} \end{bmatrix}A$

$\therefore A^{-1}= \begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\\frac{-2}{5}&\frac{1}{5} \end{bmatrix}$

Exams
Articles
Questions