Q

# Write Minors and Cofactors of the elements of following determinants: Q : 2 (ii) determinant 1 0 4 3 5 -1 0 1 2

Q : 2      Write Minors and Cofactors of the elements of following determinants:

$\small (ii) \begin{vmatrix} 1 &0 &4 \\ 3 & 5 &-1 \\ 0 &1 &2 \end{vmatrix}$

Views

Given determinant : $\begin{vmatrix} 1 &0 &4 \\ 3 & 5 &-1 \\ 0 &1 &2 \end{vmatrix}$

Finding Minors: by the definition,

$M_{11} =$ minor of  $a_{11} = \begin{vmatrix} 5 &-1 \\ 1 &2 \end{vmatrix} = 11$     $M_{12} =$ minor of  $a_{12} = \begin{vmatrix} 3 &-1 \\ 0 &2 \end{vmatrix} = 6$

$M_{13} =$ minor of  $a_{13} = \begin{vmatrix} 3 &5 \\ 0 &1 \end{vmatrix} = 3$           $M_{21} =$ minor of  $a_{21} = \begin{vmatrix} 0 &4 \\ 1 &2 \end{vmatrix} = -4$

$M_{22} =$ minor of  $a_{22} = \begin{vmatrix} 1 &4 \\ 0 &2 \end{vmatrix} = 2$           $M_{23} =$ minor of  $a_{23} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$

$M_{31} =$ minor of  $a_{31} = \begin{vmatrix} 0 &4 \\ 5 &-1 \end{vmatrix} = -20$

$M_{32} =$ minor of  $a_{32} = \begin{vmatrix} 1 &4 \\ 3 &-1 \end{vmatrix} = -1-12=-13$

$M_{33} =$ minor of  $a_{33} = \begin{vmatrix} 1 &0 \\ 3 &5 \end{vmatrix} = 5$

Finding the cofactors:

$A_{11}=$ cofactor of $a_{11} = (-1)^{1+1}M_{11} = 11$

$A_{12}=$ cofactor of $a_{12} = (-1)^{1+2}M_{12} = -6$

$A_{13}=$ cofactor of $a_{13} = (-1)^{1+3}M_{13} = 3$

$A_{21}=$ cofactor of $a_{21} = (-1)^{2+1}M_{21} = 4$

$A_{22}=$ cofactor of $a_{22} = (-1)^{2+2}M_{22} = 2$

$A_{23}=$ cofactor of $a_{23} = (-1)^{2+3}M_{23} = -1$

$A_{31}=$ cofactor of $a_{31} = (-1)^{3+1}M_{31} = -20$

$A_{32}=$ cofactor of $a_{32} = (-1)^{3+2}M_{32} = 13$

$A_{33}=$ cofactor of $a_{33} = (-1)^{3+3}M_{33} = 5$.

Exams
Articles
Questions