Get Answers to all your Questions

header-bg qa

A binary operation \ast on the set A= \left \{ 0,1,2,3,4,5 \right \} is defined as a\ast b= \left\{\begin{matrix} a+b, \, if\, a+b< 6 & \\ a+b-6,\, if\, a+b\geq 6& \end{matrix}\right.
Write the operation table for a\ast b\, in\, A\cdot Show that zero is the identity for this operation \ast and each elemnt 'a'\neq 0 of the set is invertible with 6-a, being the inverse of 'a'.

 

 

 

 
 
 
 
 

Answers (1)

we ahve a\ast b= \left\{\begin{matrix} a+b\, \ if \ \, a+b< 6 & \\ a+b-6\, \ if \ \ \, a+b\geq 6 & \end{matrix}\right. defined on the set A
A= \left \{ 0,1,2,3,4,5 \right \}
operation table of the binary operation \ast is given below
 

\ast 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Let x be the identity for element a
so, a\ast\, x= a\, \ if \ \: a+x< 6\: \ then \ \, a+x= a\; \ \ or\ \; \ if \ \; a+x\geq 6\; \ then,\; a+x-6= a\cdot
ie a+x< 6\; then\; x= 0\epsilon A\; or\; a+x\geq 6\; then\; x= 6\not{\epsilon }A
\therefore x= 0 is the identity element for this operation.
Also let y be the innverse of each non-zero element a.
Then a\ast y= 0
If a+y< 6 then a+y= 0 or if\, a+y\geq 6 then a+y- 6= 0
ie a+y< 6 then y= a\not{\varepsilon }A for all a\, \varepsilon \, A-\left \{ 0 \right \}
or a+y\geq 6 then y= 6-a\, \varepsilon \, A for all a\, \varepsilon \, A-\left \{ 0 \right \}
\therefore y= 6-a is the inverse of each non-zero element
'a' of A

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads