Get Answers to all your Questions

header-bg qa

(a) Derive an expression for path difference in Young's double slit experiment and obtain the conditions for constructive and destructive interference at a point on the screen.
(b) The intensity at the central maxima in Young's double slit experiment is I_{o}. Find out the intensity at a point where the path difference is \frac{\lambda }{6},\frac{\lambda }{4} and \frac{\lambda }{3}.

 

 

 

 
 
 
 
 

Answers (1)

d<<D

For constructive interference

S_{2}P-S_{1}P=n\lambda

\left [ D^{2} +\left ( x+\frac{d}{2} \right )^{2}\right ]-\left [ D^{2} +\left ( x-\frac{d}{2} \right )^{2}\right ]

=S_{2}P^{2}-S_{1}P^{2}

\Rightarrow S_{2}P^{2}-S_{1}P^{2}=xd

(S_{2}P-S_{1}P)(S_{2}P+S_{1}P)=xd

S_{2}P-S_{1}P=\frac{xd}{D}\; \; \; \; \; \; \; \; (d<<D)

\therefore \frac{xd}{D}=n\lambda

or x_{n}=\frac{n\lambda D}{d}\; \; \; \; (n=o,\pm 1,\pm 2)

for destructive interference

\frac{xd}{D}=\left ( n+\frac{1}{2} \right )\lambda                 (n=o,\pm 1,\pm 2)

(b) i) 

Path difference =\frac{\lambda }{6},\phi =\frac{2\pi }{\lambda }\times \frac{\lambda }{6}

                                         =\frac{\pi }{3}=60^{o}

I=I_{o}\cos ^{2}\frac{\phi }{2}

I=\frac{3I_{o}}{4}

Similarly

ii) for path difference =\frac{\lambda }{4}

         \phi =90

\therefore I=\frac{I_{o}}{2}

iii) for path difference =\lambda /3,\phi =120^{o}

\therefore I=\frac{I_{o}}{4}

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads