Get Answers to all your Questions

header-bg qa

A man in a boat rowing away from a light house 100m high takes 2 minutes to change the angle of elevation of the top of the light house from 60^{\circ}\: \: to\: \: 30^{\circ}. Find the speed of the boat in metres per minute. [Use \sqrt{3}=1.732].

 

 
 
 
 
 

Answers (1)

In \triangle ABO,

\ tan 60 = \frac{Height}{Base}

\sqrt{3}= \frac{100}{x}

x\sqrt{3}=100

x= \frac{100}{\sqrt{3}}........(1)

In \triangle ABC,

\ tan 30 = \frac{100}{(x+y)}

\frac{1}{\sqrt{3}}= \frac{100}{(x+y)}

x+y=100\sqrt{3} ....(2)

Subtracting eqn(1) from eqn(2)

x+y-x=100\sqrt{3}-\frac{100}{\sqrt{3}}

y=\frac{200}{\sqrt{3}}

y distance is travelled in 2 minutes.

Speed of Boat = = \frac{\left ( \frac{200}{\sqrt{3}} \right )}{2}

=\frac{100}{\sqrt{3}}

=\frac{100}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}}

=\frac{100\sqrt{3}}{3}

Thus the speed of boat =57.66 m/min

 

 

 

 

Posted by

Safeer PP

View full answer