Get Answers to all your Questions

header-bg qa

A takes 6 days less than B to do a work. If both A and B working together can do it in 4 days, how many days will B take to finish it ?

 

 

 

 
 
 
 
 

Answers (1)

Let B alone take x days to finish work 'W' then A alone takes  (x-6)  days to finish work 'W'.

Given : Both A and B finish the work in 4 days 

B's one day work =\frac{W}{x}

A's one day work =\frac{W}{x-6}

A and B both one day work =\frac{W}{4}

Now,

\frac{W}{x}+\frac{W}{x-6}=\frac{W}{4}

\Rightarrow \frac{1}{x}+\frac{1}{x-6}=\frac{1}{4}    (cancelling common W)

\Rightarrow \frac{(x-6)}{x(x-6)}+\frac{x}{(x-6)x}=\frac{1}{4}   (Taking LCM)

\Rightarrow \frac{2x-6}{x(x-6)}=\frac{1}{4}

\Rightarrow 4(2x-6)=x(x-6)   (cross multiplication)

\Rightarrow 8x-24=x^2-6x

\Rightarrow x^2-6x-8x+24=0

\Rightarrow x^2-14x+24=0

\Rightarrow x^2-(12+2)x+24=0    (\because 12\times 2=24)

\Rightarrow x^2-12x-2x+24=0

\Rightarrow x(x-12)-2(x-12)=0

\Rightarrow (x-12)(x-2)=0

\Rightarrow x=12    OR   x=2

x \neq 2 because otherwise A's work will bw negative and will have no value.

Hence x =12

\Rightarrow  B takes 12 days to complete work and A takes (12-6)=6 days to complete the work.

Posted by

Ravindra Pindel

View full answer