Get Answers to all your Questions

header-bg qa

(a) Two cells of emf E_{1} and E_{2} have their internal resistances r_{1} and r_{2}, respectively. Deduce an expression for the equivalent emf and internal resistance of their parallel combination when connected across an external resistance R. Assume that the two cells are supporting each other.

(b) In case the two cells are identical, each of emf E=5\; V and internal resistancer=2\; \Omega, calculate the voltage across the external resistance R=10\; \Omega.

 

 

Answers (1)

a)

Emf are \varepsilon _{1}and \varepsilon _{2}

Internal resistance are r _{1}andr _{2}

Here, I=I _{1}+I_{2}            ........(1)

Let V is the potential difference between B1 and B2

Then V = \varepsilon _{1}-I_{1}r_{1}

Therefore , I_{1}= \frac{\varepsilon _{1}-V}{r_{1}}                ......(2)

Similarly. I_{2}= \frac{\varepsilon _{2}-V}{r_{2}}                   .......(3)

Putting equation (2) and (3) in (1)

I=\frac{\varepsilon _{1}-V}{r_{1}}+ \frac{\varepsilon _{2}-V}{r_{2}}

 I=\left ( \frac{\varepsilon _{1}}{r_{1}}+\frac{\varepsilon _{2} }{r_{2}} \right )-V\left ( \frac{1}{r_{1}}+\frac{1}{r_{2}} \right )

or V = \left ( \frac{\varepsilon _{1}r_{2}+\varepsilon _{2}r_{1}}{r_{1}+r_{2}} \right )- I\left ( \frac{r_{1}r_{2}}{r_{1}+r_{2}} \right )

If we replace this with a single cell it can be written as 

V = \varepsilon _{equivalent}-Ir_{eqivalent}

Then, 

\varepsilon _{eqivalent} = \left ( \frac{\varepsilon _{1}r_{2}+\varepsilon _{2}r_{1}}{r_{1}+r_{2}} \right )

r_{equivalent} =\left ( \frac{r_{1}r_{2}}{r_{1}+r_{2}} \right )

b)

\\r_{eff}=\frac{r}{2}=\frac{2}{2}=1\Omega\\E_{ext}=IR\\\\I=\frac{E_{eff}}{R+r}=\frac{5}{10+1}=\frac{5}{11}A\\\\E_{ext}=\frac{5}{11}\times10=4.54\ Volts

Posted by

Safeer PP

View full answer