# Consider four computer firms, A, B, C, D, bidding for a certain contract. A survey of pastbidding success of these firms on similar contracts shows the following probabilities of winning:P(A) = 0:35, P(B) = 0:15, P(C) = 0:3, P(D) = 0:2.Before the decision is made to award the contract, firm B withdraws its bid. Find the new probabilities of A, C, D winning the bid.

$Let\;N\;be\;the\;event\;that\;B\;does\;not\;get\;the\;contract.\\*Let\;A\;be\;the\;event\;that\;A\;gets\;the\;contract.\;We\;calculate\;Pr(A|N).\\*Please\;not\;that\;this\;is\;does\;not\;solve\;the\;problem.\;The\;conditional\\*probability\;Pr(A|N)\;is\;not\;necessarily\;the\;probability\;described\;in\;the\\*problem.\; But\;it\;is\;very\;likely\;to\;be\;what\;you\;are\;intended\;to\;compute.\\* By\;the\;usual\;defining\;formula\;for\;conditional\;probability,\;we\;have\\* \Rightarrow Pr(A|N)=\frac{Pr(A\cap B)}{Pr(N)}\\*\therefore Pr(A\cap B)= Pr(A)\\* \Rightarrow Pr(A|N)=\frac{0.35}{0.85}\\* Similarly,\; Pr(C|N)=\frac{0.3}{0.85},\\*and,\;Pr(D|N)=\frac{0.2}{0.85}\\*So,\;the\;new\; probabilities\;of\;A,\;C,\;D\;winning\;the\;bid\;is\;0.41,\;0.35,\;and\;0.24\\* respectively.$

## Most Viewed Questions

### Preparation Products

##### Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
##### Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
##### Knockout NEET (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
##### Knockout NEET (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-