Simplify cos-1( 4cos 3x-3cos x).
Given- $cos^{-1}(4 \cos 3x - 3 \cos x)$
Using the triple angle identity for cosine:
$\cos 3x = 4 \cos^3 x - 3 \cos x$
Substitute this into the original expression:
$4 \cos 3x - 3 \cos x = 4(4 \cos^3 x - 3 \cos x) - 3 \cos x$
Simplify the expression: $4(4 \cos^3 x - 3 \cos x) - 3 \cos x = 16 \cos^3 x - 12 \cos x - 3 \cos x= 16 \cos^3 x - 15 \cos x$
Thus, the simplified expression is: $\cos^{-1}(16 \cos^3 x - 15 \cos x)$