Derive an expression for electric field intensity on perpendicular bisector of dipole and "Also explain its special case."​

Answers (1)

As shown in the above figure We want to find out Electric Field Intensity due to an Electric Dipole at a Point M which is on the Equitorial line and at a distance r from the center of a dipole.

              

Where E_1 \ \ and \ \ E_2  is the Electric Field Intensity at  M due to -q \ \ and \ \ +q charges respectively.

{| \overrightarrow{E_{1}}} |=\frac{1}{4 \pi \epsilon_{0}}* \frac{q}{r^{2}+a^{2}}

{| \overrightarrow{E_{2}}} |=\frac{1}{4 \pi \epsilon_{0}}* \frac{q}{r^{2}+a^{2}}

So \overrightarrow{| {E_{1}}} |=\overrightarrow{| {E_{2}}} |=\overrightarrow{| {E}} |

\begin{aligned} |\vec{E}| &=2 |E_{1}| \cos \theta \\ &=\frac{2}{4 \pi \epsilon_{0}} \cdot \frac{q}{\left(r^{2}+a^{2}\right)} \cos \theta \\ &=\frac{2}{4 \pi \epsilon_{0}} \cdot \frac{q}{\left(r^{2}+a^{2}\right)} \frac{a}{\sqrt{r^{2}+a^{2}}} \\ &=\frac{q \times 2 a}{4 \pi \epsilon_{0}\left(r^{2}+a^{2}\right)^{3 / 2}} \end{aligned}

Using P=q(2a)

\therefore\vec{E}=\frac{-\vec{P}}{4 \pi \epsilon_{0}\left(r^{2}+a^{2}\right)^{3 / 2}}

And 

  •  if r>>a

        then    \vec{E}_{net}=\frac{ -K \vec{P}}{r^{3}}=\frac{ -\vec{P}}{4 \pi \epsilon_{0} r^{3}}   (This is the value of E_{net} when the dipole is placed in the vacuum.)

           

          If the dipole is placed in the medium having the permittivity as \epsilon _m 

           Then \vec{E}_{net}=\frac{- \vec{P}}{4 \pi \epsilon_{m }r^{3}}=\frac{ -\vec{P}}{4 \pi \epsilon _{0} \epsilon _{r} r^{3}} 

Note: Here the direction of the electric field  E is opposite to the direction of  \vec{P}  .

Preparation Products

Knockout NEET May 2023 (Easy Installments)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 5499/-
Buy Now
Knockout JEE Main April 2021 (One Month)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 14000/- ₹ 4999/-
Buy Now
Knockout NEET Aug 2021 (One Month)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 14000/- ₹ 4999/-
Buy Now
Knockout JEE Main May 2021

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 22999/- ₹ 9999/-
Buy Now
Knockout NEET Aug 2021

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 22999/- ₹ 9999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions