Get Answers to all your Questions

header-bg qa

Example 3 : AB is a diameter of the circle, CD is a chord equal to theradius of the circle. AC and BD when extended intersect at a point E. Prove that AEB = 60°?

Answers (1)

best_answer

CD=radius,;r\*OC=OD=radius\*	riangle OCD;is;equilateral;triangle.\* Rightarrow angle DCO=angle COD=angle ODC=60^circ\* angle ACB=90^circ;;;;;;;;;;;;;;;;;;;;;;(Angle;in;semicircle)\* angle DOC=2angle DBC;;;;;;;;;;;;;;(half;angle)\* angle DBC=30^circ\* angle ECB+angle BCA=180^circ;;;;;;;;;;;;;(linear;pair)\*angle ECB=180-90=90^circ\* In,;	riangle ECB\* angle CEB+angle ECB+angle CBE=180^circ\* angle CEB+90^circ+30^circ=180^circ\* angle CEB=60^circ\*Hence,;proved;that;angle CEB=angle AEB=60^circ

Posted by

Deependra Verma

View full answer