Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma maths class 12 chapter 26 Direction Cosines and Direction Ratios exercise 26.1 question 13 maths textbook solution

Answers (1)

Answer: Angle between lines is \frac{\pi }{2}

Hint: Use dot product formula

Given: \left(a_{1}, b_{1}, c_{1}\right)=(a, b, c) \&\left(a_{2}, b_{2}, c_{2}\right)=(b-c, c-a, a-b). Find angle between two lines.

Solution: we  have \left(a_{1}, b_{1}, c_{1}\right)=(a, b, c) \&\left(a_{2}, b_{2}, c_{2}\right)=(b-c, c-a, a-b)

Now,

            \begin{aligned} &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\ &\cos \theta=\frac{(a)(b-c)+(b)(c-a)+(c)(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}} \\ &\cos \theta=\frac{(a b-a c)+(b c-b a)+(a c-b c)}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}} \\ &\cos \theta=0 \\ &\theta=\cos ^{-1}(0) \\ &\theta=\frac{\pi}{2} \end{aligned}

              Therefore, the angle between line is \theta=\frac{\pi}{2}

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads