Find : \int \sin ^-^1(2x)\: dx

 

 

 

 
 
 
 
 

Answers (1)

Let      I=\int \sin^{-1}2x\: dx

\sin^{-1}2x=t

2x=\sin t

Differentiating with respect to x,

2\: dx=\cos t\: dt

dx=\frac{\cos t\: dt}{2}

Substituting in I,

I=\frac{1}{2}\int t\cos t \: dt

=\frac{1}{2}\left [ t\: \sin t-\int 1\cdot \sin t\: dt \right ]     (using by parts)

=\frac{1}{2}\left [ t\: \sin t-\cos t \right ]+c

\left [ Substituting \: \: t=sin^{-1}2x\: \: and \: \: 2x=\sin t \right ]

=\frac{1}{2}\left [ 2x\: \sin^{-1} 2x-\cos (\sin^{-1}2x) \right ]+c

=\frac{1}{2}\left [ 2x\: \sin^{-1} 2x-\sqrt{1-4x^2} \right ]+c

Preparation Products

Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions