Find:
         \int \frac{x-5}{\left ( x-3 \right )^{3}}e^{x}dx

 

 

 

 
 
 
 
 

Answers (1)

\int \frac{x-5}{\left ( x-3 \right )^{3}}e^{x}dx
Let I= \int \frac{x-5}{\left ( x-3 \right )^{3}}e^{x}dx
         I= \int\frac{\left ( x-3 \right )-2}{\left ( x-3 \right )^{3}}e^{x}dx\Rightarrow \int \left [ \frac{\left ( x-3 \right )}{\left ( x-3 \right )^{3}}\: \: \frac{-2}{\left ( x-3 \right )^{3}} \right ]e^{x}dx
           \Rightarrow \int \left [ \frac{1}{\left ( x-3 \right )^{2}}\: \: -\frac{2}{\left ( x-3 \right )^{3}} \right ]e^{x}dx-\left ( i \right )
Now,\frac{d}{dx}\left ( x-3 \right )^{-2}= -2\left ( x-3 \right )^{3}= \frac{-2}{\left ( x-3 \right )^{3}}
and we know that
\int \left [ f\left ( x \right ) +{f}'\left ( x \right )\right ]e^{x}dx= e^{x}\left ( f\left ( x \right ) \right )+c
here
 f\left ( x \right )=\frac{1}{\left ( x-3 \right )^{2}} \: \: and\: \: {f}'\left ( x \right )= \frac{-2}{\left ( x-3 \right )^{3}}
Then \int \frac{x-5}{\left ( x-3 \right )^{3}}e^{x}dx= e^{x}\times \frac{1}{\left ( x-3 \right )^{2}}+c= \frac{e^{x}}{\left ( x-3 \right )^{2}}+c

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions