Find the area of the region lying above x-axis and included between the circle x^2 + y^2 = 8x and inside of the parabola y^2 = 4x

 

 

 

 

 
 
 
 
 

Answers (1)

Given:  x^2 + y^2 = 8x can be expressed as 

            (x - 4)^2 + y^2 = 16\quad -(i)

            Centre is (4,0) & radius 4 and equation of parabola is 

            y^2 = 4x\quad -(ii)

\therefore I = \int_0^4 y\text{ of the parabola }dx + \int_4^8y\text{ of the circle }dx

         = \underset{I_1}{\int_0^4 2\sqrt{x}dx} + \underset{I_2}{\int_4^8\sqrt{4^2 - (x-4)^2}dx}

 

I_1 = {\int_0^4 2\sqrt{x}dx}

I_1 =2\left[ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right ]^4_0

I_1 =\frac{4}{3}\left[4^{\frac{3}{2}} - 0 \right ]

       \Rightarrow \frac{4}{3} (8) = \frac{32}{3}\qquad -(1)

and I_2 = {\int_4^8\sqrt{4^2 - (x-4)^2}dx}

I_2 = \left [\frac{x-4}{2}\sqrt{4^2 -(x-4)^2 } + \frac{16}{2}\sin^{-1}\frac{x-4}{4}\right ]_4^8

I_2 = \left [\frac{x-4}{2}\sqrt{4^2 -(x-4)^2 } + \frac{16}{2}\sin^{-1}\frac{x-4}{4}\right ]_4^8

I_2 =\frac{1}{2} \left [\frac{4}{2}(0) + 16\sin^{-1}(1) - (0)\right ]

I_2 =\frac{1}{2}\times 16\times \frac{\pi}{2} = 4\pi \qquad -(2)

\therefore I = I_1 + I_2

         = \left (\frac{32}{2} + 4\pi \right )

        \Rightarrow\frac{4}{3} \left (8 + 3\pi \right ) \ \text{sq units}

Most Viewed Questions

Related Chapters

Preparation Products

Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 39999/-
Buy Now
Knockout NEET 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions